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OPTIMIZATION METHOD OF SOLVING 2D PROBLEMS OF DESIGNING
SHIELDING AND CLOAKING DEVICES

Abstract.  We study inverse problems for the 2D model of electric  conductivity that  arise when designing circular
shielding or cloaking shells and other functional devices used to control static electric fields. It is assumed that the
shells consist of a finite number of circular layers filled with isotropic (inhomogeneous or homogeneous) media. By
optimization method our inverse problems are reduced to corresponding control problems in which the role of controls
is  played  by shell  layer  conductivities.  The solvability  of  the direct  and  control  problems is  proved.  A numerical
algorithm  based  on  the  particle  swarm  optimization  method  is  proposed  for  solving  control  problems  and  some
simulation results are discussed.

Key words electric conductivity model, inverse problem, optimization method, cloaking shielding, solvability, particle
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1. Introduction

In recent years new direction in mathematical and technical physics has been intensively
developed. It  concerns developing methods of solving problems of designing special  functional
devices for controlling physical fields. An important example of such devices is a material shell in
the  form of  the  circular  ring  (or  spherical  layer  in  the  space  R3 )  filled  with  a  anisotropic
inhomogeneous medium in general case. This shell can be used, for example, to cloak any object
placed inside it from detection using a wave or static physical field.

The first works [1, 2] in this field were devoted to designing invisibility cloaking devices
with respect to electromagnetic waves on the basis of the transformation optics method proposed in
[1]. Then the main results from electromagnetic cloaking were expanded to acoustic cloaking [3]
and  later  to  cloaking  static  fields  (see,  e.g.  [4–8]).  However,  we  emphasize  that  the  solutions
obtained in these papers possess several drawbacks. In particular, it is very difficult to implement
these solutions technically. One of approaches of overcoming these difficulties consists of using the
optimization method of solving inverse problems. The method to which one should referred to as
inverse design method [9] was applied firstly in [10]. Also, it was applied in [11–19] when studying
theoretically electromagnetic or acoustic cloaking problems.

The paper consists of two parts. In the first part we formulate firstly the direct and inverse
problems for electrical conductivity model that are connected with designing circular shielding or
cloaking shells. Then we reduce our inverse problems to respective control problems and present
two theorems about  global  solvability  both direct  and control  problems.  In the second part  we
develop a numerical method of solving our control problems based on particle swarm optimization
method [20] using the scheme proposed in [21–22] when solving problems of designing thermal
shielding or cloaking devices. Finally, we discuss some results of numerical experiments.
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2. Statement of direct and inverse problems

We begin  with  statement  of  the  general  direct  conductivity  problem  considered  in  a

rectangle  D={x≡ ( x , y ):|x|<x0 ,|y|< y0 }  with  specified  numbers  x0>0  and  y0>0 .  We

assume that an external electric potential U e  is created by two vertical plates x=± x0  which

are kept at different values  U1  and  U 2 ,  while the upper and lower plates  y=± y0  are
electrically  insulated.  Let  us  assume  also  that  the  medium  filling  D  is  homogeneous  and
isotropic and its electroconductive properties are described by constant conductivity  σb>0 . If,

besides,  U1=const ,  U 2=const  then  the  potential  U e  describes  one-dimensional
(depending on coordinate x ) field with constant gradient having the form 

U e ( x )=
U 2−U 1

2
x
x0

+
U 1+U 2

2
. (1)

We assume further that there is a material layered shell  Ω={x :a<|x|<b }  inside  D

which consists  of  M  concentric  circular  layers  Ωk= {rk−1<r=|x|<rk } , k=1,2,…,M  where

r0=a , rM=b .  Each of these layers is filled with an inhomogeneous in general case isotropic

medium, described by variable conductivity σ k , k=1,2,…,M .  

We assume also that interior Ωi :|x|<a  and exterior Ωe :|x|>b  of Ω  are filled with

the same homogeneous medium having constant electrical conductivity σb>0  (see Fig. 1). 

In  this  case,  the  direct  electrical  conductivity  problem  consists  of  finding  M+2 functions,
namely, ui  in Ωi ,uk  in Ωk , k=1,2,…,M  and ue  in Ωe , which satisfy the equations

σb∆u i=0∈Ωi , σb∆ue=0∈Ωe , (2)

¿ (σ k graduk )=0∈Ωk , k=1,2,…,M , (3)

obey the following boundary conditions on the boundary ∂ D  of D :
ue|x=−x0

=u1, ue|x= x0
=u2 , ∂ ue /∂ y|y=−y0

=0 , (4)

satisfy the matching conditions on internal Γ i  and external Γe  components of the boundary
Γ  of the shell Ω  having the form

ui=u ,σ b

∂ui
∂n

=(σ∇u ) ∙ non Γ i , ue=u ,σb

∂ue
∂n

= (σ∇u ) ∙ nonΓ e (5)

and satisfy the following matching conditions:
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uk=uk+1 , σk

∂uk

∂n
=σk +1

∂uk+1

∂n
at|x|=rk , k=1,M−1                              (6)

on interfaces  |x|=r k .  In the particular case when  σ k=σb , k=1,2,…,M ,  so that the entire

medium  filling  domain  D  is  homogeneous  and  isotropic  and,  besides,  U1=const ,
U2=const , the solution of (2)-(6) is described by formula (1).

Let us assume that the following conditions take place:

(i) σ k∈L∞ (Ωk ) , σk≥σ k
0
=const>0,k=1,2,…,M ,

(ii) U 1∈H1/2 (Γ 1 ) ,U 2∈H1 /2 (Γ2 ) .

Here  H1/2 (Γ 1 )  and  H 1/2 (Γ 2 )  are  the  well  known  trace  spaces.  It  should  be  noted  that

conditions (i), (ii) ensure the existence and uniqueness of the weak solution to the direct problem
(2)–(6). More concretely, the following theorem is valid.

Theorem 1.  Let conditions (i),  (ii)  take place. Then problem (2)-(6) has a unique weak

solution  (ui ,u1 ,…,uM , ue )∈H 1 (Ωi )×H
1 (Ω1 )×…×H1 (ΩM )×H 1

(Ωe) ,  which  satisfies  equations

in (2), (3) in the distribution sense and boundary conditions in (4), (5) and (6) in the sense of traces.

The following estimate holds for the solution (ui ,u1,…,uM , ue ) :

‖ui‖H 1(Ωi)
+∑

k=1

M

‖uk‖H 1 (Ω k)
+‖ue‖H 1(Ωe )

≤C (¿∨U 1∨¿H1 /2
(Γ1)

+||U2||H1 /2 (Γ2) ) .

Here C  is a constant independent of U 1 , U 2 .
We remind that our goal is to solve inverse problems for the model (2)-(6) associated with

designing shielding or cloaking shells and other functional devices for controlling static electric

fields. Generally, the inverse problem consists of finding functions σ1 , σ2 ,…,σM  from the two
conditions

∇u i=0∈Ωi ,ue=U e
∈Ωe . (8)

Here, (ui ,ue)  is  the  restriction  of  the  solution  of  problem  (2)-(6)  to  Ωi×Ωe .  The  shell

(Ω ,σ1 , σ2 ,…,σM )  which  ensures  the  exact  fulfillment  of  conditions  (8)  is  called  a  perfect
cloaking shell or simply a cloak. In the case when  σ  is determined solely from the first (or
second) condition in (8) we will refer to the corresponding inverse problem as shielding (or external
cloaking) problem.

3. Applying optimization method. Formulation of control problems

For solving our inverse problems we apply the optimization method. By this method the
inverse problems are reduced to extremum problems of minimization of certain cost functionals
which  adequately correspond to  the inverse  problems of  designing corresponding devices  [22].

These  functionals  depend  on  conductivities  σ1 ,…,σM  of  separate  sublayers

Ω
(¿¿1 , σ1) ,…,(ΩM , σM)

¿
,  of  Ω .  It  is  comfortable  to  define  a  variable  vector

s=(σ1 , σ2 ,…,σM ) , to which we will refer to as a conductivity vector of the shell (Ω ,s) .

In order to formulate our control problems, we denote by  U [s ]=U [σ1 , σ2 ,…,σM ]  the

solution to problem (2)–(6) corresponding to (variable) conductivities σ k  in Ωk , k=1,…,M ,
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and  to  constant  conductivity  σb  in  Ωi  and  Ωe .  We  assume  below  that  the  vector

s=(σ1 , σ2 ,…,σM)  belongs to the bounded set
S={s : 0<σmin ≤σ k≤σ max , k=1,2,…,M } (9)

to which we refer to as a control set. Here given positive constants σmin  and σmax  are lower
and upper bounds of the control set S. Let us define three cost functionals

J i ( s )=
‖∇u i [s ]‖L2

(Ωi)

‖∇U e‖L2 (Ωi)

, Je (s )=
‖ue [s ]−U e‖L2

(Ω e)

‖U e‖L2(Ωe )

, J (s )=α J i ( s)+β J e ( s ) , (10)

where α , β∈[0,1]  are nonnegative numbers satisfying α+ β=1 ,

‖U [s ]−U e‖L2
(Ωe)

2
=∫

Ωe

|U [s ]−U e|
2
dx ,‖U e‖L2

(Ωe)

2
=∫

Ωe

|U e|
2
dx ,

¿∨∇ui [s ]∨¿L2 (Ωi)
=∫

Ωi

|∇ui[s ]|
2
dx ,

and formulate the following control problem:

J (s )=[α J i ( s )+β J e ( s) ]→min , s∈S . (11)

We  note  that  in  the  particular  case  α=1 ,  β=0  (or  α=0 ,  β=1 )  problem  (11)
corresponds to the shielding problem (or to the external cloaking problem). In another case when
α=β=0.5  it corresponds to the general cloaking problem.

Now we assume additionally that the following condition takes place:

(iii) σ k∈H s
(Ωk) , s>1 , k=1,2,…M .

For  theoretical  study  of  general  control  problem  (11)  one  can  apply  the  mathematical
procedure  developed  in  [17]  for  solving  inverse  problems  of  mathematical  physics  by  using
optimization method. Based on this procedure we can prove the following theorem.

Theorem 2. Let conditions (ii), (iii) take place. Then problem (11), where the set S  and

functionals J i ( s ) , J e (s )  are defined in (9), (10), has at least one solution.

Now we consider the important particular case when all layers Ω1 ,Ω2 ,…,ΩM  are filled

with different homogeneous media. In this case all conductivities σ k  are constants and therefore
problem (11) is finite dimensional. Moreover, one can show arguing as in [23] that in this case a
cloaking  performance  of  the  cloak  (Ω ,s)  is  connected  with  a  value  J (s)  by  inverse
dependence: a smaller value  J (s)  corresponds to a higher cloaking performance of the cloak
(Ω ,s)  and vice versa. Therefore, our goal when solving problem (11) will consist of finding a

conductivity  vector  (an  optimal  solution  of  (11))  sopt∈S  for  which  functional  J  takes  a

minimum  value  J opt
=J (sopt )  on  the  set  S  and  therefore  the  cloak  (Ω ,sopt)  possesses  a

maximum cloaking performance.  For  numerical  solving  problem (11)  in  this  case  we will  use
algorithm based on the particle swarm optimization (PSO) method [20].

4. Results of numerical simulations

In this section we discuss numerical results obtained when designing multilayer cloaking
shells using PSO algorithm. Numerical simulation was performed for the following problem data:

a=1 m,  b=2 m,  σ i=¿  σe=1.45×106σ0  (corresponds  to  stainless  steel)  where

σ0=1S /m ,  σmin=1×104S /m  (corresponds  to  graphite),  σmax=4.55×107S /m

(corresponds to gold). The role of the externally applied field U e  was played by the field (1).
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The first group of tests is related to the shielding problem. Our optimization analysis using

PSO algorithm for shielding problem showed that optimal values  σ K
opt  of all parameters  σ K

with odd indices k=1,3,5,…,M−1  coincide with σmax  while optimal values σ2
opt ,…,σM

opt

(with even indices) coincide with σmin . This means that the optimization design coincides with

so-called alternating design (see details in [23]). The corresponding optimal values J (sopt )  where

sopt=(σ 1
opt ,σ 2

opt ,… ,σM
opt

)  of  functional  J (s)  are presented together with  σM
opt

/σ0  and the

values J e (s
opt

) , J (sopt )  for comparison in Table I for different M=2,4,…,12  specified in

the first column.

It is seen from Table I that values J i(s
opt

)  decrease from 8.85 × 10−3 to 1.16 × 10−7 when

M  varies from 2 to 12. The last value  J i(s
opt

)  = 1.16 × 10−7 for  M=12  corresponds to

very high shielding performance of the optimal shell  (Ω ,sopt) .  At the same time, the values

J e (s
opt

)  and  J (sopt )  are  large  enough  since  we  minimize  just  the  functional  J i(s) .

Presented  results  confirm  the  high  performance  of  shielding  shells  obtained  by  using  the
optimization design for shells with a small number of homogeneous isotropic layers.

TABLE I 
SIMULATION RESULTS FOR OPTIMIZED MULTILAYERED SHIELDS 

σmin=1×104S /m,
¿

 σmax=4.55×107S /m¿

M

σM
opt

/σ0

J i(s
opt

)

J e (s
opt

)

J (sopt )

2 4.55 × 107 8.85 × 10−3 1.43 × 10−1 1.51 × 10−1

4 4.55 × 107 2.2 × 10−3 1.01 × 10−2 1.03 × 10−1

6 4.55 × 107 1.52 × 10−5 7.35 × 10−2 7.35 × 10−2

8 4.55 × 107 2.01 × 10−6 5.32 × 10−2 5.32 × 10−2

10 4.55 × 107 4.11 × 10−7 3.82 × 10−2 3.82 × 10−2

12 4.55 × 107 1.16 × 10−7 2.68 × 10−2 2.68 × 10−2

The second group of tests  is  related to the cloaking problem. Our optimization analysis

showed that optimal values σ k
opt  obtained by using PSO algorithm for cloaking problem almost

coincide with values σ k
alt  corresponding to alternating design for all j  except j=M . The

last optimal control σM
opt  takes some intermediate value between σmin  and σmax . The found

values  σM
opt  are  presented  together  with  the  corresponding values  J (sopt ) ,  J i(s

opt
)  and
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J e (s
opt

)  where sopt=(σ 1
opt ,σ 2

opt ,… ,σM
opt

)  in Table II for different M equaled to 2, 4, 6, 8, 10 and

12.

In  particular,  it  is  seen  from Table  II  that  values  J (sopt )  decrease  from 3.1×10−2 to

3.08×10−7 when  M  varies from 2 to 12. The last value  J (sopt )  = 3.08×10−7 corresponds to

very high cloaking performance of the optimal shell  (Ω ,sopt) . Thus, presented results confirm

the high performance of cloaking shells obtained by using the optimization design for shells with a
small number of layers.

TABLE II 
SIMULATION RESULTS FOR OPTIMIZED MULTILAYERED CLOAKS

σmin=1×104S /m,
¿

 σmax=4.55×107S /m¿

M

σM
opt

/σ0

J i(s
opt

)

J e (s
opt

)

J (sopt )

2 5.09 × 106 3.1 × 10−2 8.66 × 10−6 3.1 × 10−2

4 1.04 × 107 4.49 × 10−4 1.21 × 10−6 4.51 × 10−4

6 1.55 × 107 2.41 × 10−5 3.66 × 10−7 2.45 × 10−5

8 2.03 × 107 2.7 × 10−6 3.85 × 10−6 6.58 × 10−6

10 2.49 × 107 5.08 × 10−7 2.29 × 10−7 7.38 × 10−7

12 2.92 × 107 1.34 × 10−7 1.73 × 10−7 3.08 × 10−7

5. Conclusion

We studied control problems for electric conductivity model (2)–(6). These problems arise
when  optimization  method  is  applied  for  solving  static  electric  field  shielding  and  cloaking
problems. The electric conductivities of the shell layers play the role of passive controls. We have
proved  the  theorem  about  correct  solvability  of  the  direct  conductivity  problem  and  proved
solvability  of  general  control  problem.  We also  proposed  numerical  algorithm for  solving  our
control problems which is based on particle swarm optimization method. Optimization analysis
showed that a high shielding or cloaking performance of the designed devices can be achieved
when  using  multilayer  shell  consisting  of  several  isotropic  homogeneous  layers  with  optimal
constant  conductivities.  We emphasize  that  high  cloaking  and  shielding  performances  can  be
achieved without use of methamaterials, but using natural materials with high contrast.
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