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CONTROL APPROACH IN 3D PROBLEMS OF DESIGNING OF 

BILAYERED MAGNETIC CLOAKS 
 

 

Abstract. We consider control problems for the 3D model of magnetic scattering by a permeable isotropic obstacle 

having the form of a spherical bilayer shell. These problems arise while developing the design technologies of magnetic 

cloaking devices using the optimization method for solving corresponding inverse problems. The solvability of direct 

and optimization problems for the magnetic scattering model under study is proved. The optimality system which 

describes the necessary conditions of extremum is derived. Also, numerical aspects of applying the optimization 

approach for solving problems of designing magnetic cloaking devices are discussed. 
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1. Introduction 

 

In the last few years, devices for cloaking material objects have attracted the rapid attention 

in the research fields of “invisibility” and metamaterials. The first works in the mentioned fields 

were the articles [1, 2, 3]. These were the start of development of different methods, schemes and 

techniques of solving problems when cloaking electromagnetic waves, acoustic waves, magnetic, 

electric, thermal and other static fields [4, 5, 6, 7]. It should be noted that the solutions obtained in 

these papers possess several drawbacks. In particular, some components of spatially dependent 

parameter tensors of ideal cloak are required to have infinite or zero values at the inner boundary of 

the cloak [2] which are very difficult to implement. 

One of approaches of overcoming these difficulties consists of replacing “exact” singular 

solutions of cloaking problems under study by approximate non-singular solutions and designing 

cloaking devices based on these approximations (see., e.g., [8, 9, 10, 11]). Alternative approach is 

based on using the optimization method of solving inverse problems. This method is based on 

replacing initial cloaking problem by minimization problem of a suitable tracking-type cost 

functional which corresponds to inverse problem under consideration. The method to which one 

should referred to as inverse design method [12, 13] was applied in [14] devoted to the numerical 

analysis of 2D problems of designing layered cloaking shells. Also, it was applied in [15]–[21] 

when studying theoretically electromagnetic or acoustic cloaking problems. Paper [22] are devoted 

to studying invisibility problem in X-ray tomography. 

The goal of this paper is theoretical analysis of the cloaking problem for the 3D model of 

magnetic scattering by bilayer shell using the optimization method. The plan of our paper is as 

follows. Firstly, we formulate the direct magnetic scattering problem and prove its correct 

solvability. Then we formulate the corresponding inverse cloaking problem, and reduce it to 

respective control problem for which we prove the solvability. Finally, we discuss numerical 

aspects of applying the optimization approach for solving problems of designing magnetic cloaking 

devices under study. 

 

2. Statement and analysis of direct magnetic scattering problem 

 

We consider the domain in the space 
3R  having in spherical coordinates ( ) ,,r  the form 

of spherical layer  braR == xx :3

1  surrounded by another spherical layer 
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 crbR == xx :3

2 , where a , b  and c  are positive constants. Denote by i  and e
 the 

interior and exterior of the domain 21  . We will assume that the domains i  and e
are filled 

by homogeneous isotropic media with constant permeabilities i  and e , respectively, while 
1  

and 
2  are filled by inhomogeneous isotropic media with variable permeabilities 

1  and 
2 , 

respectively (see Fig. 1). 

Denote by 
RB  the ball Rx , where cR  , containing domains i , 

1  and 
2 . We will 

assume that there are sources outside RB , which generate externally applied magnetic field 

agrad−=aH  corresponding to potential a  which satisfies the Laplace equation 0=a  in RB . 
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== eee  (1) 

,at, 1
11 ar

rr

i
ii =




=




=   ,at, 2

2
1

121 br
rr

=



=




=   (2) 

( )
,at, 2

22 cr
rr

sa
esa =



+
=




+=   ( ) ( ) .as1 →== xx ros  (3) 

In the particular case, when 
1  and 2  are nonnegative constants and, besides, the field aH  is 

uniform, the direct problem (1)–(3) admits an exact solution which can be found using Fourier’s 

method (see [9, 10]). 

Now, consider the case when the external field aH  is inhomogeneous and therefore it is 

impossible to apply Fourier’s method for finding an exact solution of the problem (1)–(3). A 

number of functional spaces will be used while studying the direct problem (1)–(3) and respective 

control problems. Let Ree B= 
. We will use the space )(1 DH , where D  is one of domains 

RB , i , 1 , 2  e
, and also spaces ( )kL  , ( )k

sH  , 0s , 2,1=k , ( )QL2
, ( )RH 2/1

 and 

( )RH − 2/1
. Here RBQ   is an arbitrary open subset of RB , R  is a boundary of RB  (see Fig. 2). 

 

 
Figure 1: Layout of external sources and 

spherical bilayer cloak 

 
Figure 2: Schematic layout of artificial 

boundary R  

 

The norms and scalar products in ( )DH 1
, ( )k

sH  , ( )QL2
, ( )RH 2/1

 and ( )RH − 2/1
 will be 

denoted by 
D,1

 , ( ) D,1, , 
ks 


,

, ( )
ks  ,, , 

Q
 , ( )Q, , 

R


,2/1
 and 

R−


,2/1
. We set 

( ) ( ) ( ) 0:
0

 = 
xkk LL , ( ) ( ) ( ) 0:

0
 = xk

s

k

s HH , 0const0 = , 2,1=k . It is 

well known by the embedding theorem that the continuous and compact embedding 

( ) ( )kk

s LH    at 2/3s , 2,1=k , holds and the following estimate takes place: 

 .2,1,2/3),(
,)(

=
 ksHC k

s

ssL kk

  (4) 
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Here sC  is a constant depending on 2/3s  and 
1 , 

2 . We need also a subspace 

( ) ( ) eee HH == in0:1 , equipped with the norm 
( )ee H 

= 1,1
. The space ( )eH   

will be served for describing restrictions of externally applied field a  to the domain e . 

It should be noted that by the trace theorem there exists a trace ( )RH
R




2/1
 for any 

function ( )RBH 1  while for any function ( )e

e H   there exists a normal trace 
R

ne


 /  and 

the following estimates hold: 

 ),(1

,2/1 RXR BHC
R




 (5) 

 ).(/
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e

ee

R

e HCn
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−

 (6) 

Here RC , RC  are constants depending on e  and R  but are independent of X  and 

( )e

e H  . 

We assume below that the following conditions take place: 

(i) ( )11 0
1

 


 L , ( )22 0

2

 


 L , 

0

11   , 
0

22   , 0const0

1 = , 0const0

2 = ; 

(ii) ( ).ea

e H
e




 

As the potential   is determined up to an additive constant we will not distinguish functions 

of the space )(1

RBH  which differ from each other by an additive constant. Thus the main role 

below will be played by the following quotient-space )(1

RBHX =  with the norm:  

 .
22222

21 eiX 
+++=  (7) 

One can show that the space )(1

RBHX =  is Hilbert for this norm and, besides, the following 

analogue of Poincare-Friedrichs inequality holds: 

 .XC
XPBR

  (8) 

Here PC  is a constant which is independent of X . 

We begin our analysis with defining weak formulation and weak solution of direct problem 

(1)–(3). Preliminarily we reduce problem (1)–(3) to an equivalent boundary problem considered in 

the bounded domain (ball) RB . To this end we introduce as in [19] the Dirichlet-to-Neumann 

operator ( ) ( )RR HHT → − 2/12/1:  which maps every function ( )RHh  2/1
 to the function 

( )RH  − 2/1/
~

 . Here 
~

 is a solution of the external Dirichlet problem for equation 0
~
=  in 

Re B\  with the boundary condition h
R

=


~
 satisfying the condition ( )1)(

~
o= x  as →= xr . 

We note that problem (1)–(3) considered in 
3R  is equivalent to boundary value problem (1), (2) 

considered in the ball RB  under the following additional condition for s  on R : 

 Rss ΓTn on/ =  (9) 

For brevity we will refer below to the problem (1), (2), (9) as Problem 1. 

Based on the space X  we derive now the weak formulation of Problem 1. Let XS  be a 

test function. We multiply every of equations in (1) considered in domains i , 1 , 2  and e , by 

S , integrate over i , 1 , 2  or e , respectively, and apply Green formulae. Adding the obtained 

identities and using the boundary conditions in (2) and (9) we arrive at the following identity for the 

quadruple ( ) Xei = ,,, 21 :  

 ( ) ( ) ( ) .,,;,,, 210 XSSFSaSaSa =+   (10) 

Here and below   denotes the pair ( )21,  while ( ),0a , ( ),;, 21 a  and F  are bilinear and linear 

forms defined by  
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 ( ) ( ) ,,0  SdTSdSdSa
Rei

ei  
−+= xx  (11) 

( ) ( ) ( ),,;,;,;, 221121 SaSaSa +=   ( ) 
+−=

RR

SdnSdTSF ee  /,  (12) 

 ( ) ,,;
1

111  = xSdSa   ( ) ,,;
2

222  = xSdSa   (13) 

Identity (10) represents the weak formulation of problem (1), (2), (9) and its solution 

( ) Xei = ,,, 21  will be called a weak solution of Problem 1. Arguing as in [19], one can 

easily show, that the introducing of the weak solution is admissible in the following sense: it 

satisfies all equations in (1) in the distribution sense, and also boundary conditions in (2) and (9) in 

the trace sense. 

Using Hölder inequality and definition (7) for the norm 
X
  and (9), (10) we have 

( ) ( ) XXLL
SSSd 


 11111

111  x , 

( ) ( ) XXLL
SSSd 


 22222

222  x . 

Besides, using (5), (6), we derive from (11), (12) and (13) that 

 
XXii SSd

i

  x , ,
XXe

e
e SSd   x  (14) 

 ( )
XXRT SCCSTSdT

RRR


−

2

,2/1,2/1
 , (15) 

 ( ) ( ) ( )eiXXRT SCCSa  ,max,, 0

2

00 =+ , (16) 

 ( )
X

e

RRT

ee SCCCCSnTSF
eRRR −

+




 +

,1,2/1,2/1,2/1
/, . (17) 

It follows from these estimates and (12) that forms ( ),;, 21 a , 0a  and F  are continuous on X , 

and the following estimates hold:  

 ( )
( ) ( )

( )
XXLL

SSa +
 

21
2121 ,;,  , (18) 

 ( ) RRRTRT

e

X
CCCCCCCCFCa

e

++=


,max,, 2

00
,1

000 *  . (19) 

Here 
*X  is a dual of X  with respect to space ( )RBL2

0 . 

If, moreover, the condition (i) takes place then we have at ( )ei  ,min0 = : 

( ) ( ) XddTdda
eRei

ei −+=   0

2

0

22

0 , xxx  , 

20

11
11


  xd , 

20

22
22


  xd . 

It follows from these estimates and the definition of the norm (7) in space X  that the bilinear form 

a  defined in (10) is coercive in X  under condition (i) and, besides,  

 ( ) ( )0

2

0

1*

2

* ,,,min,,  eiX
Xa = . (20) 

We note that the bilinear form a  introduced in (10) defines a linear operator *: XXA →  

acting by 

 ( ) ( ) ( )SaSaSaSA ,;,,,, 210 +=  , (21) 

while problem (10) is equivalent to operator equation 

 FA = . (22) 

As the bilinear form a  is continuous and coercive on X  under condition (i), then from the Lax-

Milgram theorem follows that the operator *: XXA →  is an isomorphism and the inverse 
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*1 : XXA →−


 to operator A  is also isomorphism. Let 1−=  AC . It is clear by the Lax-Milgram 

theorem that ( )*1 /1  =CC . Using this estimate we derive that operator equation (22) has for any 

element *XF   a unique solution ( ) XFA = −1

 , for which the estimate *1 XX
FC

 

holds. Using this fact and the second estimate in (19) we conclude that for any field ( )e

e H   

problem (10) has a unique solution X , and the following estimate holds: 

 102
,1

2 , CCCC
e

e

X
=


 . (23) 

We emphasize that constants 
1C  and 

2C  in (23) depend on i , e , 
0

1 , 
0

2  and R  but do not 

depend on functions 
1  and 

2  satisfying condition (i). Let us formulate the results obtained as the 

following theorem. 

Theorem 1. Let conditions (i), (ii) take place. Then for any pair ( )21, =  we have: 

1) the operator *: XXA →  defined in (21) is an isomorphism and for the inverse operator 

*1 : XXA →−


 the estimate ( )*1

1 /1  − CA  holds where constant 
*  is defined in (20); 

2) for any external field ( )e

e H   problem (10) has a unique solution X , and the 

estimate (23) holds where the constant 2C  depends on i , e , 
0

1 , 
0

2  and R  but is independent 

of ( )21, . 

 

3. Formulation of the inverse problem. Applying the optimization method. Derivation of the 

optimality system 

 

In this section we consider the inverse problem for model (1)–(3) arising while developing 

the design technologies of magnetic cloaking devices. This problem consists of finding unknown 

permeabilities 1  and 2  of inhomogeneous media filling 1  and 2  from the following 

conditions 0=  in i , a=  in e . For solving this inverse problem we apply the 

optimization method which is based on minimization of certain cost functional. As a cost functional 

we choose the following: 

 ( ) ( ) ( )  ( )121 =++=  III , (24) 

where 

 ( ) ( )  
−−==

eeii

dIdI aa xx
22

2

22

1 , . (25) 

Here  ,  1,0  are arbitrary parameters satisfying condition 1=+  . The choice of functional 

( )I  responds to the problem of internal (or external) cloaking at 1= , 0=  (or at 0= , 

)1= . For the remaining values of   and   functional (25) corresponds to the general cloaking 

problem.  

We will assume that the controls 1  and 2  are changed over certain sets 1K  and 2K . It is 

assumed that the following conditions hold.  

(j) ( )11 0
1

 sHK


, 0const0

1 = , ( )22 0
2

 sHK


, 0const0

2 = , 2/3s ; 00  . 

Setting 21 KKK = , ( )21, =  we define the operator *: XKXG →  by 

 ( ) ( ) ( ) XSSFSaSaSFSASG −+−= ,,;,,,,,, 210    (26) 

and rewrite the weak formulation (10) of problem 1 as ( ) 0, = G . Consider the following control 

problem: 

 ( ) ( ) ( ) ( ) .,,0,inf,
222

,
2

,2
22

,1
10

21

KXGIJ
ss

=→++








  (27) 
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Here 0 , 
1 , 

2  are non-negative parameters which are used to control the relative importance of 

terms in (28). Set ( ) ( ) ( ) ==  ,,0,:, JGKXZad . 

Theorem 2. Let, under assumptions (ii) and (j), 01  , 02   or 01  , 02   and 
1K , 

2K  be bounded sets. Then control problem (26) has at least one solution ( ) 2121,, KKX   . 

Proof. Denote by ( ) ad

mm Z , , ( )mmm

2,
1
 = ,  ,...2,1Nm  a minimizing sequence 

for the functional J for which the following relations hold: 

( ) ( ) XSSFSaSa mmmm =+ ,,;,, 210  , ( )
( )

( ) *

,
,inf,lim JJJ

adZ
m

m

m
=

→



. (28) 

By conditions of Theorem 2 we have  

 Nmcc
s

m

s

m 


2
,

21
,

1
21

,  . (29) 

Here and below 1c , 2c , 3c  are some constants which do not depend on m . It follows from (29) and 

Theorem 1 that 3c
X

m  . From this estimate and (29) we derive that there are weak limits 

1

*

1 K , 2

*

2 K , X*  of some subsequences of sequences  m

1 ,  m

2 ,  m . Using this fact 

and compactness of embedding ( ) ( )kk

s LH    at 2/3s , 2,1=k  we conclude that 
*

11  →m
 

strongly in ( )1L , 
*

22  →m
 strongly in ( )2L , while *→m  weakly in X . 

Let us prove that ( ) 0,, *

2

**

1
= G , i.e. that 

 ( ) ( ) XSSFSaSa =+ ,,;,, **

2

*

1

*

0  . (30) 

To this end we pass to the limit in (28) as →m . It is clear that linear term ( )Sa m ,0   passes to 

( )Sa ,*

0   as →m  while for the difference ( ) ( )SaSa mmm ,;,,;, **

2

*

121 −   we have by (12) 

( ) ( ) ( ) ( ) ( ) ( )SaSaSaSaSaSa mmmmmmm ,;,;,;,;,;,,;, **

2222

**

1111

**

2

*

121 −+−−  . 

  (31) 

Let us show that every of terms in the right-hand side of (31) vanishes as →m . In fact, taking 

into consideration (13), we have for the first term in (31): 

( ) ( ) ( ) ( ) XSSdSdSaSa mmmmm −+−−   11

*

11

**

1

**

1111 ,;,; xx  . (32) 

As *→m  weakly in X  then the first integral in the right-hand side of (32) tends to zero as 

→m  for any XS . Besides, it follows from the strong convergence 
*

11  →m
 in ( )1L  that 

the second integral in (32) also tends to zero as →m . This means that the first term in the right-

hand side of (31) tends to zero as →m . In a similar way one can show using (14) that the second 

term in the right-hand side of (31) tends to zero as →m . Therefore passing to the limit in (28) as 

→m  we arrive at (29). This means that ( ) 0, ** = G  where ( )*

2

** ,
1
 = . As the functional 

( )J  is a weakly lower semicontinuous functional on KX   we derive that ( ) ***, JJ =  . This 

proves the theorem. 

The second stage of analysis of extremum problem (27) consists of derivation an optimality 

system describing necessary conditions of extremum. For this purpose we make use of the 

extremum principle in smoothly-convex extremum problems [23]. Preliminarily we find the Fréchet 

derivative with respect to   of the operator *: XKXG →  defined in (26). It follows from 

linearity of the operator G  with respect to   that the Fréchet derivative ( )̂,̂G  at every point 

( ) KX  ̂,ˆ  where ( )21
ˆ,ˆˆ  =  is defined by ( )  ˆ

ˆˆ,ˆ AAG = . Here operator ̂A  is defined by 

(21) at  ˆ= . Besides, it follows from (24) that 

 ( ) ( ) ( ) ( ) XSSSSI
ei a −+=

 ,ˆ,ˆ,ˆ  . (33) 



 

7 
 

Following [32] we introduce a Lagrange multiplier X  which will be referred to as an 

adjoint stage and consider the Lagrangian RXKX →:L  defined by the formula 

( ) ( ) ( )
XX

GJL


+ *,,,,,  . Denote by ( ) *** :ˆ,ˆˆ XXGA →    the operator adjoint 

for operator ( ) ** :ˆ,ˆˆ XXGA →    defined by 

( ) ( ) XSSASGSGSA
XXXXXXXX

==








,,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
**

**

**  . 

It follows from linearity of operator G  with respect to 
1 , 

2  and from convexity of the set 

21 KKK =  that the set ( ) ( ) KXGKG ==  ,,, **
x  is a convex subset of *X  for any 

function X . As the operator ( ) AG ˆˆ,ˆ    is an isomorphism by Theorem 1, then from results 

of [23] the next theorem follows. 

Theorem 3. Let under assumptions (ii) and (j) the pair ( ) KX  ̂,ˆ  where ( )21
ˆ,ˆˆ  =  

be a solution of problem (27). Then there exists a unique Lagrange multiplier X̂  that satisfies 

the Euler-Lagrange equation 

 ( ) ( ) ( ) ( ) ( )  XSSSSaSaSa
ei a −+−=+

 ,ˆ,ˆˆ,;ˆ,ˆˆ,ˆ, 0210ˆ   (34) 

and the minimum principle holds, which is equivalent to the following variational inequalities: 

 ( ) ( ) 11111,1111 0ˆ,ˆ,ˆˆ,ˆ
1

Ka
s

−+−


 , (35) 

 ( ) ( ) 22222,2222 0ˆ,ˆ,ˆˆ,ˆ
2

Ka
s

−+−


 . (36) 

We note that the direct problem (10), where one should put = ˆ ,  ˆ= , adjoint problem 

(34) with respect to the adjoint field ̂  and the inequalities (35), (36) represent the optimality 

system describing the necessary extremum conditions for the problem (27). The optimality system 

plays an important role when solving control problems. Firstly, it can be used to establish sufficient 

conditions for the data that ensure the uniqueness and stability of the optimal solutions to the 

considered control problems with respect to small perturbations of the data (see, for example, [24]). 

Secondly, the constructed optimality system can be used to develop an efficient numerical 

algorithm for solving control problem (27). The simplest algorithm can be obtained using the 

simple iteration method. The m -th iteration of such an algorithm consists in finding unknown 

values of m , m , 1+m

r  and 1+m

  given m

r , m

 , ,...,2,1=m , starting with the initial data 0

r , 0

  

by successively solving the following problems: 

 ( ) ( ) ( ) XSSFSaSaSa mmmm

r

m =++ ,,;,;, 210  ,  

 ( ) ( ) ( )=++ mmmm

r

m SaSaSa ,;,;, 210    

 ( ) XSSdSd

i e

a

mm 













−+=  

 

xx 0 , (37) 

 ( ) ( )( ) 1

1

1,

1

1 0,, Ka r

mmm

rrs

m

rr

m

r −+− +



+  ,  

 ( ) ( )( ) 2

1

2,

1

2 0,, Ka mmm

s

mm −+− +



+

  .  

An alternative algorithm is based on the use of the particle swarm method according to the scheme 

proposed in [27, 28] for the numerical solution of 2D problem of thermal cloaking. 

 

4. Conclusion  

 

In conclusion, we studied control problems for magnetic scattering model (1)–(3). These 

problems arise when optimization method is applied for solving cloaking problems for respective 

scattering model. The magnetic permeabilities 1  and 2  of the inhomogeneous media filling the 

layers 1  and 2  of the cloak play the role of controls. We have proved the correctness of direct 
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magnetic scattering problem and proved solvability of general control problem (28). Also, we 

derived the optimality system describing the necessary conditions of extremum and proposed two 

numerical algorithms for solving our cloaking problems. Authors plan to devote a forthcoming 

paper to developing and studying the properties of the mentioned algorithms and to comparative 

analysis of results of numerical experiments performed using these algorithms. 
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