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Abstract. Many stream ciphers are used to encrypting the data stream at high speed. These stream ciphers are based on 

keystream generators. The keystream generator produces an output stream of arbitrary length, called a keystream, after 

initialization with a secret value, called a key. The legal receiver can produce the same keystream with the secret key and 

decrypt the encrypted data stream. The main problem of any algebraic attack is the need to solve a nonlinear system of 

algebraic equations. We used two approaches for solving these systems a linearization method and a method based on the 

Grӧbner basis [1, 2]. All explored in the work generators that are based on linear feedback shift registers (LFSR). We 

supposed that an adversary knows everything about the generator beside the secret key. As result where build up a few 

generators and algebraic attacks on them.  
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Let 𝐾 = (𝑘0, … , 𝑘𝑛−1) be the unknown initial state and 𝐿 be the known feedback matrix (see 

[1]). The secret key 𝐾 and matrix 𝐿 would produce a keystream 𝑘0, 𝑘1, 𝑘2, … where (𝑘𝑡, … , 𝑘𝑘+𝑛−1) =
𝐾𝐿𝑡 . If an adversary knows the values 𝑘𝑡1 , … , 𝑘𝑡𝑚  of the keystream elements at the 𝑚 clocks 𝑡1, … , 𝑡𝑚 

he can set up the following system of linear equations: 

𝑘𝑡1 = 𝐾𝐿
𝑡1𝑃, 

                                      . . .                                      (1) 

𝑘𝑡𝑚 = 𝐾𝐿
𝑡𝑚𝑃, 

where 𝑃 = (1, 0, … , 0)𝑡. The linearity of the system is a real treat for a generator of keystream. Thus, 

to strengthen LFSR-based keystream generators, one has to incorporate some kind of non-linearity. To 

apply, for example, a non-linear function to the outputs from several LFSRs and to output the result. 

Definition 1. Let 𝐹 be a finite field. A (𝑙,𝑚) −combiner consists of the following components: 

1) 𝑠 LFRSs with lengths 𝑛1, … , 𝑛𝑠 and feedback matrices 𝐿1, … , 𝐿𝑠; 
2) an internal state 𝑆 ∈ 𝐹𝑚 × 𝐹𝑛 where 𝑛 = 𝑛1 +⋯+ 𝑛𝑠; 
3) a matrix 𝐿 over 𝐹 of size 𝑛 × 𝑛, defined by 

𝐿 ≔ (
𝐿1
0

⋱
0
𝐿𝑠
); 

4) a (projection) matrix 𝑃 over 𝐹 of size 𝑛 × 𝑙; 
5) a non-linear next memory state function Ѱ: 𝐹𝑚 × 𝐹𝑙 → 𝐹𝑚; 

6) an output function 𝑓: 𝐹𝑚 × 𝐹𝑙 → 𝐹. 

The definition supposes the combiner consist of 𝑠 LFSRs and use outputs of them and the memory for 

generation the final outputs. 

Let start with simple generator over field 𝐹2. It uses three LFSRs lengths three, four and five, 

respectively. Their initial states are denoted by 𝐴0 = (𝑎0, 𝑎1, 𝑎2), 𝐵0 = (𝑏0, 𝑏1, 𝑏2, 𝑏3), 𝐶0 =
(𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4). The minimal polynomial of LFSR 𝐴 is 𝑚𝑎(𝑥) = 𝑥

3 + 𝑥 + 1 and the sequence (𝑎𝑡) 
produced by LFRS 𝐴 fulfills the recursion 𝑎𝑡+3 = 𝑎𝑡+1 + 𝑎𝑡. The minimal polynomial of 𝐵 is 𝑚𝑏(𝑥) =
𝑥4 + 𝑥3 + 1 and the recursion 𝑏𝑡+4 = 𝑏𝑡+3 + 𝑏𝑡. The third minimal polynomial is 𝑚𝑐(𝑥) = 𝑥

5 + 𝑥2 + 1 
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with the recursion 𝑐𝑡+5 = 𝑐𝑡+2 + 𝑐𝑡. In this case 𝐾 ≔ (𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4). The 

feedback matrix L and the projection matrix are defined as  

𝐿 ≔

(
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 and 𝑃 ≔

(
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. 

At each clock 𝑡, the keystream element 𝑧𝑡 is generated by the function 𝑧𝑡 = 𝑓(𝐾𝑡) = 𝑓(𝑎𝑡, 𝑏𝑡, 𝑐𝑡) =
𝑎𝑡𝑏𝑡 + 𝑎𝑡𝑐𝑡. Hereby, 𝑎𝑡, 𝑏𝑡, 𝑐𝑡, 𝑧𝑡 are the outputs from LFRSs 𝐴, 𝐵, 𝐶  and the keystream at the clock 𝑡, 
respectively.  

Let 𝐴0 = (0, 0, 1), 𝐵0 = (0, 0, 0, 1), 𝐶0 = (1, 0, 1, 1, 1) than the generated keystream we may see in 

the table 1. 

 

Table 1 

 

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

𝑎𝑡 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 

𝑏𝑡 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 

𝑐𝑡 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 

𝑧𝑡 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 

 

On the base of the Table 1 we can construct the system of non-linear equations. For a successful 

algebraic attack need to solve the system.  

1) 𝑎0𝑏0 + 𝑎0𝑐0 = 0, 

2) 𝑎1𝑏1 + 𝑎1𝑐1 = 0, 

3) 𝑎2𝑏2 + 𝑎2𝑐2 + 1 = 0 

4) 𝑎0𝑏3 + 𝑎1𝑏3 + 𝑎0𝑐3 + 𝑎1𝑐3 = 0 

5) 𝑎1𝑏0 + 𝑎1𝑏3 + 𝑎2𝑏0 + 𝑎1𝑐4 + 𝑎2𝑐4 = 0 

6) 𝑎2𝑏1 + 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎1𝑏1 + 𝑎1𝑏0 + 𝑎1𝑏3 + 𝑎2𝑐0 + 𝑎2𝑐2 + 𝑎0𝑐0 +
𝑎0𝑐2 + 𝑎1𝑐0 + 𝑎1𝑐2 + 1 = 0 

7) 𝑎0𝑏2 + 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎2𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎0𝑐1 + 𝑎0𝑐3 + 𝑎2𝑐1 + 𝑎2𝑐3 = 0 

8) 𝑎0𝑏2 + 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎0𝑐2 + 𝑎0𝑐4 = 0 

9) 𝑎1𝑏2 + 𝑎1𝑏1 + 𝑎1𝑏3 + 𝑎1𝑐3 + 𝑎1𝑐0 + 𝑎1𝑐2 = 0 

10) 𝑎2𝑏2 + 𝑎2𝑏0 + 𝑎2𝑐4 + 𝑎2𝑐1 + 𝑎2𝑐3 = 0 

11) 𝑎0𝑏1 + 𝑎0𝑏3 + 𝑎1𝑏1 + 𝑎1𝑏3 + 𝑎0𝑐0 + 𝑎0𝑐4 + 𝑎1𝑐0 + 𝑎1𝑐4 = 0 

12) 𝑎2𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎1𝑏2 + 𝑎1𝑏0 + 𝑎1𝑏3 + 𝑎2𝑐1 + 𝑎2𝑐1 + 𝑎2𝑐0 + 𝑎2𝑐2 + 𝑎1𝑐1 + 𝑎1𝑐0 + 𝑎1𝑐2 +
1 = 0 



13) 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎1𝑏0 + 𝑎2𝑏1 + 𝑎2𝑏0 + 𝑎0𝑐2 + 𝑎0𝑐1 + 𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎1𝑐1 + 𝑎1𝑐3 + 𝑎2𝑐2 +
𝑎2𝑐1 + 𝑎2𝑐3 = 0 

14) 𝑎2𝑏2 + 𝑎2𝑏1 + 𝑎0𝑏2 + 𝑎0𝑏1 + 𝑎2𝑐3 + 𝑎2𝑐2 + 𝑎2𝑐4 + 𝑎0𝑐3 + 𝑎0𝑐2 + 𝑎0𝑐4 + 1 = 0 

15) 𝑎0𝑏2 + 𝑎0𝑏3 + 𝑎0𝑐4 + 𝑎0𝑐3 + 𝑎0𝑐0 + 𝑎0𝑐2 = 0 

16) 𝑎1𝑏0 + 𝑎1𝑐0 + 𝑎1𝑐2 + 𝑎1𝑐4 + 𝑎1𝑐1 + 𝑎1𝑐3 = 0 

17) 𝑎2𝑏1 + 𝑎2𝑐1 + 𝑎2𝑐3 + 𝑎2𝑐0 + 𝑎2𝑐4 + 1 = 0 

18) 𝑎0𝑏2 + 𝑎1𝑏2 + 𝑎0𝑐4 + 𝑎0𝑐1 + 𝑎0𝑐0 + 𝑎1𝑐4 + 𝑎1𝑐1 + 𝑎1𝑐0 = 0 

19) 𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎1𝑐0 + 𝑎1𝑐1 + 𝑎2𝑐0 + 𝑎2𝑐1 = 0 

20) 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎1𝑏0 + 𝑎1𝑏3 + 𝑎2𝑐1 + 𝑎2𝑐2 + 𝑎0𝑐1 + 𝑎0𝑐2 + 𝑎1𝑐1 + 𝑎1𝑐2 = 0 

21) 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎2𝑏1 + 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎0𝑐3 + 𝑎0𝑐2 + 𝑎2𝑐3 + 𝑎2𝑐2 + 1 = 0 

22) 𝑎0𝑏2 + 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎0𝑐4 + 𝑎0𝑐3 = 0 

23) 𝑎1𝑏2 + 𝑎1𝑏1 + 𝑎1𝑏0 + 𝑎1𝑐0 + 𝑎1𝑐2 + 𝑎1𝑐4 = 0 

24) 𝑎2𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏3 + 𝑎2𝑐1 + 𝑎2𝑐3 + 𝑎2𝑐0 + 𝑎2𝑐2 = 0 

25) 𝑎0𝑏2 + 𝑎0𝑏0 + 𝑎1𝑏2 + 𝑎1𝑏0 + 𝑎0𝑐2 + 𝑎0𝑐4 + 𝑎0𝑐1 + 𝑎0𝑐3 + 𝑎1𝑐2 + 𝑎1𝑐4 + 𝑎1𝑐1 + 𝑎1𝑐3 = 0 

26) 𝑎2𝑏1 + 𝑎2𝑏3 + 𝑎1𝑏1 + 𝑎1𝑏3 + 𝑎2𝑐3 + 𝑎2𝑐0 + 𝑎2𝑐4 + 𝑎1𝑐3 + 𝑎1𝑐0 + 𝑎1𝑐4 = 0 

27) 𝑎0𝑏2 + 𝑎0𝑏0 + 𝑎0𝑏3 + 𝑎1𝑏2 + 𝑎1𝑏0 + 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎2𝑏0 + 𝑎2𝑏3 + 𝑎0𝑐4 + 𝑎0𝑐1 + 𝑎0𝑐0 +
𝑎0𝑐2 + 𝑎1𝑐4 + 𝑎1𝑐1 + 𝑎1𝑐0 + 𝑎1𝑐2 + 𝑎2𝑐4 + 𝑎2𝑐1 + 𝑎2𝑐0 + 𝑎2𝑐2 = 0 

28) 𝑎2𝑏1 + 𝑎2𝑏0 + 𝑎0𝑏1 + 𝑎0𝑏0 + 𝑎2𝑐0 + 𝑎2𝑐1 + 𝑎2𝑐3 + 𝑎0𝑐0 + 𝑎0𝑐1 + 𝑎0𝑐3 = 0 

29) 𝑎0𝑏2 + 𝑎0𝑏1 + 𝑎0𝑐1 + 𝑎0𝑐2 + 𝑎0𝑐4 = 0 

It has been proven that finding a solution of a system quadratic equations is an NP-hard problem. 

This means that there is probably no polynomial time algorithm for solving general systems of non-linear 

equations over finite fields. We used two approaches for solving non-linear systems: a linearization 

method and the Grӧbner bases method. 

The theory of Grӧbner bases has been initiated by Bruno Buchberger as a tool to solve the ideal 

membership problem. The main useful result is the following theorem. 

Theorem. Consider a system of equations 𝑓1 = 0,… , 𝑓𝑛 = 0    where 𝑓1, … , 𝑓𝑛 ∈ 𝐹𝑞[𝑥1, … , 𝑥𝑛] and 

𝐹𝑞 is a finite field. We define the ideal 𝐼 =< 𝑓1, … , 𝑓𝑛, 𝑥1
𝑞 − 𝑥1, … , 𝑥𝑛

𝑞 − 𝑥𝑛 >. Then, for any term 

ordering, the reduced Grӧbner basis of 𝐼 is equal to 

1. {𝑥1 − 𝑥1
0, … , 𝑥𝑛 − 𝑥1

0} 𝑖𝑓 (𝑥1
0, … , 𝑥𝑛

0) is the unique solution of the system of equations. 

2. { 1 } if the system has no solution. 

We used the program WOLFRAM MATHEMATIC for construct a Grӧbner basis. 

The key idea of linearization method is to re-write the system of non-linear equation from n 

unknowns as a new system of linear equations with increased number of unknowns. This allows us to 

solve a system of linear equations, which is a much simpler task. 

For  future computing experiments it was written the program “Generator” in C++ language for 

generation a key stream generator. Where tested a few generators and attacked by both linearization and 

Grӧbner basis methods.   

The most difficult and interesting problem is to estimate the complexity of Grӧbner basis method, 

especially to get a theoretical border. It is obviously that the linearization method is more effective in a 

small dimension tasks, if the dimension of the task grows, it is hard to say which approach is preferable.      

Obviously, any experiment is useful and productive in some way, it is much more important to 

get a general theoretical base of a stream ciphers resistance. 

Definition 2. Let    𝑓(𝑥1, … , 𝑥𝑛) be Boolean function. Then algebraic immunity is defined as 



𝐴𝐼(𝑓) = min{𝑑𝑒𝑔(𝑔)| 𝑓𝑔 ≡ 0 𝑜𝑟 (𝑓⨁1)𝑔 ≡ 0} . 

We intend to explore the relationship between the cipher resistance and the algebraic immunity 

of Boolean functions used.  
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