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Abstract. A continuum steady-state model of oxygen transport in brain is studied. The problem is considered as 

an inverse problem with unknown sources. The unique solvability of the inverse problem is proven, and an 

algorithm to find solutions is proposed.  
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1. Introduction 

Delivery of a sufficient amount of oxygen to cerebral cells is the most important 

requirement for functioning of the brain. The lack of oxygen can lead to irreversible neuronal 

damage within a few minutes. Therefore, mathematical models of oxygen transport in brain 

substance are important for simulation of dangerous situations arising from impaired cerebral 

circulation. 

The most promising approach is that the brain material is considered as a two-

compartment (blood and tissue) structure, and coupled equations describe convection of 

oxygen in blood as well as its diffusion and consumption in tissue (Secomb et. al., 2000; 

Payne, Lucas, 2018; Su, 2011). 

A perspective approach to modeling oxygen transport is associated with spatial 

homogenization of state variables. There, the homogenization is being performed under the 

assumption that the tissue and blood fractions occupy the same spatial region. In (Khaled, 

Vafai, 2003), this approach was applied to a model of heat transfer in tissue comprising a 

network of blood vessels. A similar approach to studying oxygen transport process in brain 

was used in (Su, 2011), where a two-phase continuum model describing coupled oxygen 

transport in tissue and blood is considered. A coupled system of equations arises here as the 

result of homogenization of a two-phase model of oxygen transport in a media contained 

blood and tissue fractions. Numerical simulations for a simplified domain were conducted, 

and the comparison with simulations based on the original (non-homogenized) model was 

done. 

In (Kovtanyuk et. al., 2018), a theoretical analysis of steady-state oxygen transport 

model is fulfilled. A priori estimates of solutions, implying the unique solvability of the 

problem under some conditions, are obtained. An iterative numerical procedure for finding 

solutions is proposed, along with the proof of its convergence. In (Kovtanyuk et. al., 2019), 

the investigation of the steady-state continuum model was continued, the existence and 

uniqueness of solutions for the boundary-value problem were established, and numerical 

examples illustrated the theoretical analysis were presented. 

In the present work, the boundary-value problem of oxygen transport is considered as an 

inverse problem with unknown sources. The unique solvability of the inverse problem is 

proven and numerical algorithm to find a solution is proposed.  

2. Problem formulation 
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A two-compartment (blood and tissue) model of oxygen transport is considered. It is 

assumed that the both compartments occupy the same spatial region        and have 

different volume fractions for the blood and tissue compartments,   and    ,  respectively. 

Following (Su, 2011; Kovtanyuk et. al., 2018; Kovtanyuk et. al., 2019), oxygen transport can 

be described by the following coupled equations: 

                                

Here,   is the oxygen concentration in blood;   the oxygen concentration in tissue;   the 

tissue oxygen metabolic (consumption) rate associated with brain functioning;   
 (   )  the local exchange at the blood-tissue interface, where   is the plasma oxygen 

concentration;    (   )  , where   is the volume fraction of blood;     a given velocity 

field in the domain   ; and   and   are diffusion coefficients for blood and tissue, 

respectively. 

There is a nonlinear monotonic dependence of the tissue oxygen metabolic rate,  , on 

the tissue oxygen concentration,  , and of the plasma oxygen concentration on the blood 

oxygen concentration,  . To simplify the model, the following linear approximations: 

         and         ,  where         , will be used. 

In (Kovtanyuk et. al., 2018), a perforated model domain was considered to simulate the 

ends of arterioles and venules. The concentrations corresponding to the ends of arterioles and 

venules were set at the boundaries of the holes.  

In the present work, we will use another approach to simulate the ends of arterioles and 

venules. Let                be disjoint subdomains. The oxygen transport will be 

described by the following system of elliptic equations: 
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Here,    is the characteristic function of the subdomain   . 

Equations (1) are supplemented by the following boundary conditions imposed on  

      : 

        (      )                     (      )       . (2) 

The inverse problem consists in finding intensities   (                )        and the 

corresponding solution    {   }  of the boundary-value problem (1) and (2) with the 

following integral overdetermination: 
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Here,    and     are the prescribed avereged values of the functions      with respect to  

subdomains    .  

3. Problem formalization. 

Let     ( )     ( ),                  ,  and            By 

(   ) (respectively ((   ))) we denote a value of the functional      at the element     

(respectively      at the element    ) wich coincide with the inner product  in  

  (respectively in     )  if      (                   )              (   )  
Let the follwing conditions hold: 

(i)        ( )                                  ( )  



 

(ii)      ( )                           on   . 

Define the following operators and functionals: 
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((    ))  =  (    )               

((    ))   =  (      )                

These equalities are valid for any    {   }   {   }     Using these operators, the 

inverse problem (1)‒(3) can be rewritten in the following form. 

Problem (P). Find    {   }      and  a vector     (           )  (         
       )  such that 
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4. Reducing the Problem (P) to a system of linear algebraic equations. 

The following auxiliary results are true. 

Lemma 1. For any        , there exists a unique solution of the problem 

                                                                                                                                          ( ) 

Let                   and moreover 

                                                                                                                                ( ) 

Then for a solution of the equation (4) the following presentation is true: 

                                                               ∑                                                                              ( )

  

   

 

From the overdetermination conditions (5), we conclude that the intensities       

           are solutions of the following system of linear algebraic equations: 

                                  ∑((     ))        ((     ))                                               ( )

  

   

 

Lemma 2. The system of linear algebraic equations (9) is uniquely solvable.  

Thus, accounting for Lemmas 1 and 2, the following final result with respect to unique 

solvability of Problem (P) is true. 



 

Theorem. Problem (P) is uniquely solvable. Moreover, its solution               
is defined by formula (8), where    (           )  are  solutions of the system of linear 

algebraic equations (9).   

5. Conclusion. 

A new approach to find a solution of the boundary-value problem of oxygen transport in 

brain is proposed. The problem is considered as an inverse problem with finite 

overdetermination. The inverse problem is reduced to finding a solution of a system of linear 

algebraic equations. 

Acknowledgments.  

We would like to thank you for the Klaus Tschira Foundation (Grant 00.302.2016) and 

Würth Foundation for the supporting this work. 

 

References  

Khaled A.-R.A., Vafai K. The role of porous media in modeling flow and heat transfer 

in biological tissues // Int. J. Heat Mass Transf. 2003. V. 46. P. 4989–5003. 

Kovtanyuk A.E., Chebotarev A.Yu., Dekalchuk A.A., Botkin N.D., Lampe R. Analysis 

of a mathematical model of oxygen transport in brain // Proc. Int. Conf. Days on Diffraction 

2018. 2018. P. 187–191. 

Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Turova V.L., Sidorenko I.N., Lampe 

R. Continuum model of oxygen transport in brain // J. Math. Anal. Appl. 2019. V. 474. P. 

1352–1363. 

Payne S.J., Lucas C. Oxygen delivery from the cerebral microvasculature to tissue is 

governed by a single time constant of approximately 6 seconds // Microcirc. 2018. V. 25. 

e12428. 

Secomb T.W., Hsu R., Beamer N.B., Coull B.M. Theoretical simulation of oxygen 

transport to brain by networks of microvessels: Effects of oxygen supply and demand on 

tissue hypoxia // Microcirc. 2000. V. 7. P. 237–247. 

Su S.-W. Modelling blood flow and oxygen transport in the human cerebral cortex. PhD 

Thesis. Oxford, Depart. Eng. Sci., 2011. 248 p. 


