PRIMITIVE NORMALITY OF THE CLASS OF PRINCIPALLY WEAKLY INJECTIVE S-ACTS

Alena Stepanova, Evgenii Efremov Far Eastern Federal University, Russia <u>stepltd@mail.ru</u> <u>efremov-el@mail.ru</u>

Abstract. One of the standard problems in the model theory of S-acts is to describe the monoids over which a certain class of S-acts has some model-theoretic properties. Primitive normality of the class of all S-acts and the class of all injective S-acts was studied in works of Stepanova A.A. and Efremov E.L. Namely, it is proved that the class of all injective S-acts is primitive normal. The notion of principally weakly injective S-act can be considered as a natural generalization of the notion of injective S-act. In this article we describe monoids S such that the class of principally weakly injective S-acts is primitive normal. It is shown that the class of principally weakly injective S-acts is primitive normal. It is shown that the class of principally weakly injective S-acts is primitive normal. It is shown that the class of principally weakly injective S-acts is primitive normal. It is shown that the class of principally weakly injective S-acts is primitive normal.

Keywords: theory, primitive normal theory, monoid, S-act, principally weakly injective S-act.

This theme relates to model-theoretic algebra, that is a branch of mathematics that connects the model theory with other areas of mathematics. The subject of the research is the class of principally weakly injective S-acts.

The model theory of modules over a ring has long been a respectable branch of both model theory and ring theory. The concept of an act over a monoid S (S-act) is a generalization of the concept of a module over a ring. The model theory of S-acts is rather less developed but again exhibits a nice interplay between algebra and model theory, with its own distinct flavor. Many problems in model theory of S-acts came from the module model theory. For example, the problem of an algebraic description of monoids S over which some classes of S-acts have some model-theoretic properties (axiomatizability, completeness, stability, primitive normality, primitive connectivity, etc.). These properties for classes of projective, flat, regular, free S-acts were studied in the works of Gould V., Poizat B., Mustafin T.G., Stepanova A.A., Ovchinnikova E.V. and others.

The characterization of the monoids S with axiomatizable and model complete class of regular S-acts was given in [8]. In this article the authors describe the monoids with complete class of regular S-acts which satisfy the additional conditions. They studied the monoids S, all regular S-acts over which have the stable and superstable theory. The authors proved the stability of the axiomatizable model complete class of regular S-acts. They also described the monoids S with the superstable and ω -stable class of regular S-acts when this class is axiomatizable and model complete.

In [10] the authors investigate the commutative monoids over which the axiomatizable class of regular S-acts is primitive normal and antiadditive. They proved that the primitive normality of an axiomatizable class of regular S-acts over the commutative monoid S is equivalent to the antiadditivity of this class and it is equivalent to the linearity of the order of a semigroup R such that an S-act $_{S}R$ is a maximal (under the inclusion) regular subact of the S-act $_{S}S$.

The monoids S over which the class of all regular S-acts is axiomatizable and primitive connected were studied in [13]. Stepanova A.A. proved that the axiomatizable class of all regular S-acts is primitive connected if and only if the semigroup *R* is rectangular band of groups and R = eR for some idempotent $e \in R$, where ${}_{S}R$ is the inclusion maximal regular S-subact in the S-act ${}_{S}S$.

Questions of axiomatizability, completeness, model completeness and stability for classes of free, projective and flat S-acts were considered in [5].

The difficulty of studying the model-theoretical properties of classes of injective S-acts, in contrast to projective, flat, free S-acts, is the absence of an algebraic description of injective S-acts. The first work in this direction can be considered the work of Stepanova A.A. [9], where she

described commutative monoids over which the class of all injective S-acts is axiomatizable, complete and model complete. The continuation of these studies is the work of Stepanova A.A. and Efremov E.L. where the structure of monoids S with axiomatizable classes of weakly injective S-acts, finitely generated weakly injective S-acts and principally weakly injective S-acts has been described [3].

Complete, model-complete, stable and superstable classes of injective and weakly injective S-acts were studied in [1]. It is shown that for a right-reversible monoid S the class of injective (weakly injective, finitely generated, weakly injective) S-acts is complete only if S is trivial. For an arbitrary monoid S it is shown that the completeness of the class of principally weakly injective S-acts is equivalent to the triviality of the monoid S. For a finite monoid S it is proved that the stability (superstability) of the theory of any injective, weakly injective, finitely generated weakly injective S-act is equivalent to the fact that S is a linearly ordered monoid (fully ordered monoid). In addition, it is shown that for an arbitrary monoid S a class of principally weakly injective S-acts is stable (superstable) if and only if S is a linearly ordered monoid (fully ordered monoid).

In this article, we describe the monoids S such that the class of principally weakly injective S-acts is primitive normal.

Below we recall some facts of the theory of S-acts, model theory and universal algebra [4, 6-7].

Throughout this article, S is a monoid with neutral element 1.

An algebraic system $\langle A; s \rangle_{s \in S}$ of signature $L_S = \{s \mid s \in S\}$ is called *a* (*left*) *S*-act, or an act over S, or simply an S-act, whenever $s_1(s_2a) = (s_1s_2)a$ and 1a = a for all $s_1, s_2 \in S$, $a \in A$. We denote an S-act $\langle A; s \rangle_{s \in S}$ by $_{S}A$. All S-acts in this article are left S-acts. Each subsystem $_{S}B$ of an S-act $_{S}A$ is called a S-subact of $_{S}A$ and denoted by $_{S}B \subseteq _{S}A$.

We say that a homomorphism $\varphi: {}_{S}B \to {}_{S}C$ of S-acts *extends* a homomorphism $f: {}_{S}A \to {}_{S}C$ of S-acts, where ${}_{S}A \subseteq {}_{S}B$ whenever $\varphi \mid_{A} = f$, i.e. $\varphi(a) = f(a)$ for all $a \in A$.

An injective S-act is an S-act ${}_{S}Q$ such that for any S-act ${}_{S}A$, for any S-subact ${}_{S}B$ of ${}_{S}A$ and for any homomorphism $\varphi: {}_{S}A \to {}_{S}Q$ there exists a homomorphism $\overline{\varphi}: {}_{S}B \to {}_{S}Q$ which extends φ , i.e., $\overline{\varphi}$ is such that the diagram

is commutative.

A principally weakly injective S-act is an S-act ${}_{S}Q$ such that for any principal left ideal Ss of S and for any homomorphism $\varphi: {}_{S}S \to {}_{S}Q$ there exists a homomorphism $\overline{\varphi}: {}_{S}S \to {}_{S}Q$ which extends φ .

We denote by **S-PWInj** the class of all principally weakly injective S-acts.

A monoid *S* is called *a linear ordered monoid* if the set $\{Ss \mid s \in S\}$ is linear ordered with respect to inclusion.

Let *T* be a complete theory of signature *L*, $\mathcal{A} = \langle A; L \rangle$ be an algebraic system.

A tuple $\langle a_1, ..., a_n \rangle$ of elements of A and a tuple $\langle x_1, ..., x_n \rangle$ of variables are denoted by \bar{a} and \bar{x} , respectively. Let \bar{v} be tuple of elements or variables. We introduce the following notation: $l(\bar{v})$ is the length of $\bar{v}, \bar{v}(i)$ is the *i*-th element of \bar{v} . Instead of $\bar{a} \in A^n$ we write $\bar{a} \in A$.

If $\Phi(\bar{x}, \bar{y})$ is a formula of signature *L*, $\bar{a} \in A$, $l(\bar{a}) = l(\bar{y})$, then we denote by $\Phi(\mathcal{A}, \bar{a})$ the set $\{\bar{b} \in A \mid \mathcal{A} \models \Phi(\bar{b}, \bar{a})\}$.

A formula $\exists \bar{x}(\Phi_0 \land ... \land \Phi_k)$, where $\Phi_i \ (i \leq k)$ are atomic formulas of signature *L*, is said to be *primitive*. Let $\Phi(\bar{x}, \bar{y})$ be a primitive formula of signature *L*, $\bar{a} \in A$, $l(\bar{a}) = l(\bar{y})$. Then we say that a set $\Phi(\mathcal{A}, \bar{a})$ is *primitive*. If $\bar{b} \in A$ and $l(\bar{b}) = l(\bar{y})$, then the sets $\Phi(\mathcal{A}, \bar{a})$ and $\Phi(\mathcal{A}, \bar{b})$ are called *primitive copies*.

A theory *T* is said to be *primitive normal* if X = Y or $X \cap Y = \emptyset$ for any primitive copies *X* and *Y*. A class \mathcal{K} of algebraic systems of signature *L* is called *primitive normal* if a theory Th(\mathcal{A}) is primitive normal for any algebraic system $\mathcal{A} \in \mathcal{K}$.

Theorem. *The class* **S-PWInj** *of all principally weakly injective S-acts is primitive normal if and only if S is a linearly ordered monoid.*

The reported study was funded by RFBR according to the research project №17-01-00531.

1. Efremov E.L. Completeness and stability of the class of injective S-acts // Algebra and Logic. 2018 (printing).

2. Efremov E.L. Primitive normality and primitive connected of class of weakly injective S-acts // Algebra and Logic. 2019 (printing).

3. Efremov E.L., Stepanova A.A. // Axiomatizability of the class of weakly injective S-acts // Siberian Math. J. 2017. N58:4. P. 611–618.

4. Ershov, Yu.L., Palyutin E.A. Mathematical logic: a handbook for students and researchers. Moscow: The Science, 1987. 336 p.

5. Gould V., Mikhalev A.V., Palyutin E.A., Stepanova A.A. Model-theoretic properties of free, projective, and flat S-acts // Journal of Mathematical Sciences. 2009. N164(2). P. 195-227.

6. Keisler H.J., Chang C.C. Model theory. Moscow: The World, 1977. 614 p.

7. Kilp M., Knauer U., Mikhalev A. V. Monoids, acts and categories with applications to wreath products and graphs: a handbook for students and researchers. Berlin, New York: de Gruyter, 2000. 546 p.

8. Mikhalev A.V., Ovchinnikova E.V., Palyutin E.A., Stepanova A.A. Theoretic-model properties of regular polygons // Journal of Mathematical Sciences. 2007. N140(2). P. 250-285.

9. Stepanova A.A. Axiomatizability and completeness of the class of injective acts over a commutative monoid or a group // Siberian Math. J. 2015. N56:3. P. 516–525.

10. Stepanova A.A. Baturin G.I. Regular S-acts with primitive normal and antiadditive theories // Journal of Mathematical Sciences. 2012. N185(3).

11. Stepanova A.A. Polygons with primitive normal and additive theories // Algebra and Logic. 2008. N47:4. P. 279–288.

12. Stepanova A.A. Primitive connected and additive theories of polygons // Algebra and Logic. 2006. N45:3. P. 172–179.

13. Stepanova A.A. Regular polygons with primitive connected theories // Siberian Math. J. 2014. N55:3. P. 544-547.